
COMMUNICATION SYSTEMS: THEORY AND MEASUREMENTS M – Prof. Oreste Andrisano 2018/2019

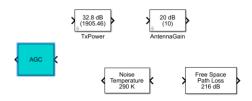
Simulink BPSK digital modulation systems

Open the web page www.wilab.org/systems-lab

Download the file BPSK Modulator Student

Exercise 1:

Modify the simulink scheme by inserting the correct simulink blocks to create a BPSK modulator

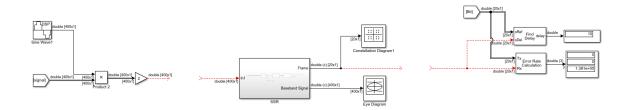

Change the value of Eb/No from -20 to 40 dB through the parameter "Eb/No (dB)" in the AWGN channel block and focus the attention on:

- the transmitted signal in the time and frequency domains through the scope and spectrum analyzer, respectively;
- the received signal in the time and frequency domains through the scope and spectrum analyzer, respectively;
- the eye diagram;
- the constellation through the constellation diagram block.

Considerations:	

Optional Exercise 2

Properly connect the blocks that accounts for the LINK BUDGET to produce a 10dB EB / N0 signal to noise ratio


Compare the result obtained with the AWGN channel model configured with the same signal to noise ratio.

Exercise 3

Download the file BPSK_ModDemod_student

Modify and use the $BPSK_ModDemod$ model to measure the performance of Probability of errors per bit as Eb / N0 varies. Compare the results obtained with the Pb curves.

Eb/N0	BER Measured	Pb theoretical
1 dB		
2 dB		
3 dB		
4 dB		
5 dB		

Use the MATLAB Code to plot

```
L= "Define the number of Levels";
SNRdBt=0:1:15;
    SNRt=10.^(SNRdBt/10);
    poe_on_theory= 0.5.*erfc(sqrt(SNRt));
    poe_on=1/log2(L)*(L-1)/L*erfc(sqrt(SNRt)*3*log2(L)/((L-1)^2)*(L-1)/(L+1));
    figure(1)
    grid on
    semilogy(SNRdBt, poe_on_theory, 'r-');
    semilogy(SNRdBt, poe_on, 'b-');
    hold on
```

Check BER from SIMULINK MODEL.

Considera	ations:	 	 	 	 	 	• • • • • •	 		 • • •
		 	 	 	 	 		 		 • • •
		 	 	 	 	 		 	. .	